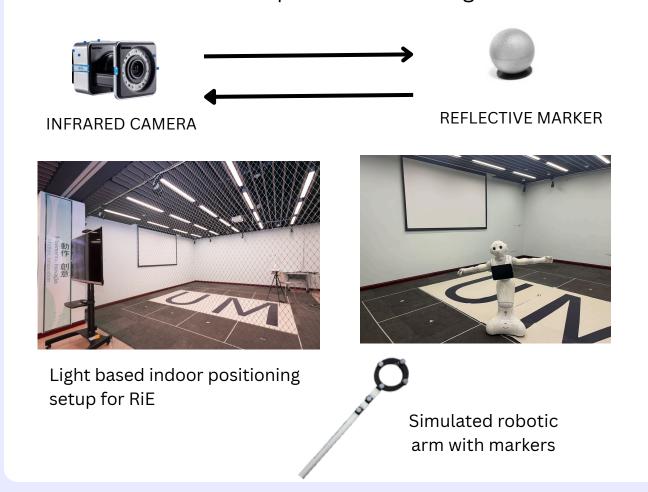


A HIGH SPEED INFRARED CAMERA ARRAY BASED POSITIONING AND ITS APPLICATION TO INDOOR ROBOTICS STEM EDUCATION

Tai Oi-Tai¹, Carla Raquel Castro Da Rocha Madureira¹, Pedro Nicolau Faria Da Fonseca¹ and Tam Kam-Weng²


¹Department of Electronics, Telecommunications and Informatics of University of Aveiro, Portugal ²Faculty of Science and Technology of University of Macau, Macao SAR, China

INTRODUCTION

This study presented an accurate indoor positioning system utilizing a high speed infrared camera array, designed as an accessible educational tool for emerging robotics applications. To enable accurate spatial tracking, a volumetric capture environment measuring 2m x 2m x 3.5 m was established, instrumented with 10 infrared cameras. The cameras featured a 2.2 megapixel resolution (2048 x 1088) and a maximum frame rate of 330 Hz at this resolution. A 50 cm long robotic unit, equipped with 15 mm diameter retroreflective markers, served as the target object within this calibrated space. A controller designed in the MATLAB achieved positioning accuracy within the sub-centimeter range.

METHOD

This interactive STEM demo is to demonstrate how the motion capture system works. When holding a stick as a robot arm simulator with a reflective marker on the track of the pattern letter "UM" on the ground, we can observe the track we walk and compare it with the original track.

INDOOR POSITIONING CHALLENGES FOR ROBOTICS STEM EDUCATION

Human-Robot Interaction is a welcoming approach for the latest STEM education. Recent development of Robotics in Education (RiE) shows positive impact on learning-based education. RiE education is mainly about the indoor teaching and; its positioning is still a challenge because of the denied GNSS positioning signal for indoor navigation.

GNSS

USA:GPS China: BDS Russia: GLO

Russia: GLONASS Europe: GALILEO

Complex radio environment

Complex topology

Complex human motion patterns

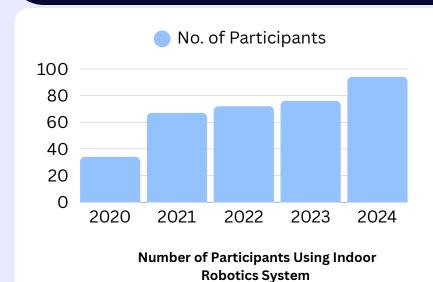
EXISTING SOLUTIONS

1. Magnetic (m)

2. Acoustic (m)

4. WiFi (m)

3. Light Signal (cm)


REFERENCES

Assessment and Learning for Engineering (TALE), pp. 779-782. IEEE, 2022.

[1] Tai, Oi-Tai, Kam-Weng Tam, and Wai-Son Kuan. "An impedance transformer for UHF RFID and WiFi cross-technology communication-based tourism crowd counting." Electronics Letters 60.8 (2024):

[2] Jiang, C. Y., Wang, B. Y., Tai, T. O., Tam, K. W. et al., "An intelligent occupancy detection system for smart tourism based on RFID passive tag antenna array and random forest." 2023 IEEE 13th International Conference on RFID Technology and Applications (RFID-TA). IEEE, 2023.
[3] Da Costa, Miguel Gomes, Oi-Tai Tai et al., "A Diffraction Experiment Kit with an Arduino based Programmable Rotational Sample Platform." In 2022 IEEE International Conference on Teaching,

RESULTS AND CONCLUSION

System performance was evaluated through in-situ demonstrations involving 340 student participants with 90% of positive feedback on the positioning functionality in RiE of the STEM education.

In the past 5-year study, the data shows that RiE based on light positioning for indoor STEM education and demonstrations is an effective approach for student STEM motivation. A gradually increasing motivation of STEM study is observed in the number of participants in the light based positioning setup. There is 176% increase from 2020 to 2024.