¹DEPARTMENT OF ELECTROMECHANICAL, SYSTEMS AND METAL ENGINEERING, GHENT UNIVERSITY ²FLANDERS MAKE @ UGENT - CORELAB MIRO

ON-LINE TRACKING OF COGGING STIFFNESS USING THE MULTI-BIN SDFT

Foeke Vanbecelaere^{1,2}, <u>Jasper De Viaene^{1,2}</u>, Michael Monte^{1,2}, Kurt Stockman^{1,2}

1MOTIVATION

Cogging stiffness is often forgotten in the case of PMSM-driven mechanisms.

Model-based control design requires an accurate model, otherwise the performance is sub-optimal and speed ripples occur.

Due to changing load conditions (e.g. temperature), the cogging torque and accompanying cogging stiffness is time-dependent. To capture this parameter variation, an on-line tracking algorithm is required.

Flux prefers path of least reluctance (or highest permeability μ) through the stator teeth: $\mu_{
m steel}>>\mu_{
m air}$ Attractive forces towards an equilibrium where the reluctance is minimum.

COGGING

 \blacktriangleright Cogging torque T_c : • Position-dependent due to varying reluctance

2 CASE

Gravity-free rod driven by a PMSM

3APPROACH

Whenever tracking is desired, the machine task is interrupted, the load moves to an equilibrium position and tracking frequencies are injected for subsequent parameter estimation.

5 CONCLUSION

- SDFT for harmonic extraction combined with GN for curve-fitting is suited for on-line tracking of the cogging stiffness and accompanying damping.
 - •Initial guesses are required, but these can be very rough.
- The accuracy is acceptable and tuning rules for increasing the accuracy are presented in the paper.
- Algorithms are based on available control data, requiring no additional hardware.
- Drawback: The machine task must be interrupted when tracking is desired.

REFERENCES

[1] E. Jacobsen and R. Lyons, The sliding DFT, IEEE Signal Processing Magazine, 2003

CONTACT Foeke.Vanbecelaere@ugent.be

MANUFACTURING INNOVATION NETWORK