
    MOTIVATION
Cogging stiffness is often forgotten in the case of PMSM-driven mechanisms.
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ON-LINE TRACKING
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3    APPROACH

5    CONCLUSION
SDFT for harmonic extraction combined with GN for curve-fitting is suited for on-line tracking of the
cogging stiffness and accompanying damping.
 Initial guesses are required, but these can be very rough.
The accuracy is acceptable and tuning rules for increasing the accuracy are presented in the paper.
Algorithms are based on available control data, requiring no additional hardware.
Drawback: The machine task must be interrupted when tracking is desired.
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    MOTIVATION

LINEARISED SYSTEM

    CASE
Gravity-free rod driven by a PMSM
 

   Hooke’s law at small angles

 Starting from an equilibrium position (θ=0°), the actuation torque Tm is step-wise increased and
 mapped against the measured position θ (at static equilibrium where Tm= -Tc ).

STATIC CHARACTERIZATION FOR ACHIEVING A REFERENCE VALUE
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4    VALIDATION

CONTROL SCHEME

H1(s)

Hold equilibrium
position

Injection of tracking frequencies

Physical system

Whenever tracking is desired, the machine task is interrupted, the load moves to an equilibrium position and
tracking frequencies are injected for subsequent parameter estimation.

Model

PI-controller

Derivative and filter
s

τs+1
=

Ω(s)
θ(s)

ESTIMATION SCHEME (RUNS ON A COMMERCIALLY AVAILABLE MOTION CONTROLLER)

H2(s)

Ω(s)
Tm(s)

=H1(s).F(s)

M=|H2(s)|=
^ ω

((J+bτ)ω2-k)2+(Jτω2-b-kτ)2ω2

Harmonic pattern Initialization: filling the SDFT-window and/or reaching steady-state
Number of iterations

Initial guesses:
Extracted from an

off-line impulse response

Harmonic extraction with the
sliding discrete Fourier transform (SDFT) [1]

Curve-fit function

GAUS-NEWTON (GN) ALGORITHM FOR NON-LINEAR CURVE FITTING

Parameters k,b are iteratively updated assuming that the objective function fmin is approximately quadratic.
This approximation requires the calculation of the gradients of fmin with respect to the parameters k,b.
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CONVERGENCE FROM INITIAL TO FINAL CURVE-FIT

Avoid leakage by choosing fi with an integer period N.

Optionally, a moving averager can be included
to avoid outliers. The averaged magnitudes are then
used for curve-fitting instead of the instant ones.
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EXPERIMENTAL SETUP

Actuation torque
Tm

Inertia
Jrod

Tc

Position θ
Speed Ω
Acceleration α

Bearings:
damping b

Inertia
Jrotor

Tm+Tc=Jα+bΩ
Tm=Jα+bΩ+k(θ)θ

Jrod+Jrotor

Estimation interval: 2θmax

kref=6.32 Nmm/°

COGGING
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Flux prefers path of least reluctance (or highest permeability μ) through the stator teeth: μsteel >> μair.
 Attractive forces towards an equilibrium where the reluctance is minimum.
 Cogging torque Tc:   Position-dependent due to varying reluctance
         Periodic with to the number of equilibrium positions:

Nc=lcm(p,s)

Model-based control design requires an accurate model, otherwise the performance is sub-optimal and
speed ripples occur.
Due to changing load conditions (e.g. temperature), the cogging torque and accompanying cogging stiffness is
time-dependent. To capture this parameter variation, an on-line tracking algorithm is required.
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Test

Tm

Limit θmax by shifting φi and setting Ai low 
2θmax

Tm=Test due to active controller:
set Ai high to have sufficient excitation at |Tm|i  

[Ai sin(2πfit+φi)]Test=∑
i=1

5

fi=1Hz.{1;2;4;8;10}
Ai=50Nmm.{1;1;1;1/4;1/6}
φi={15°;5°;45°;80°;90°}

Trade-off!

Update time is adjustable and set here to
the minimum of: rmax ts=1.25 ms.
Increasing the update time allows averaging.
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